TY - CHAP
T1 - Vibration Suppression of MR Sandwich Beams Based on Fuzzy Logic
AU - Maleke, Hasan
AU - Moeenfard, Hamid
AU - Ghasemi, Amir Hossein
AU - Baqersad, Javad
PY - 2017/2/1
Y1 - 2017/2/1
N2 - In this paper, the vibration suppression capabilities of magnetorheological (MR) layer in smart beams is investigated. A three-layered beam including MR elastomer layer sandwiched between two elastic layers is considered. By assuming the properties of MR layer in the pre-yield region as viscoelastic materials behavior, the governing equations of motion as well as the corresponding boundary conditions are derived using Hamilton’s principle. Due to field-dependent shear modulus of MR layer, the stiffness and damping properties of the smart beam can be changed by the application of magnetic field. This feature is utilized to suppress the unwanted vibration of the system. The appropriate magnetic field applied over the beam is chosen through a fuzzy controller for improving the transient response. The designed fuzzy controller uses the modal displacement and modal velocity of the beam as its inputs. Free and forced vibration of smart sandwich beam is investigated using numerical simulations. The results show that the magnetorheological layer along with the designed fuzzy controller can be effectively used to suppress the unwanted vibration of the system. The qualitative and quantitative knowledge resulting from this research is expected to enable the analysis, design and synthesis of smart beams for improving the dynamic performance of smart engineering structures.
AB - In this paper, the vibration suppression capabilities of magnetorheological (MR) layer in smart beams is investigated. A three-layered beam including MR elastomer layer sandwiched between two elastic layers is considered. By assuming the properties of MR layer in the pre-yield region as viscoelastic materials behavior, the governing equations of motion as well as the corresponding boundary conditions are derived using Hamilton’s principle. Due to field-dependent shear modulus of MR layer, the stiffness and damping properties of the smart beam can be changed by the application of magnetic field. This feature is utilized to suppress the unwanted vibration of the system. The appropriate magnetic field applied over the beam is chosen through a fuzzy controller for improving the transient response. The designed fuzzy controller uses the modal displacement and modal velocity of the beam as its inputs. Free and forced vibration of smart sandwich beam is investigated using numerical simulations. The results show that the magnetorheological layer along with the designed fuzzy controller can be effectively used to suppress the unwanted vibration of the system. The qualitative and quantitative knowledge resulting from this research is expected to enable the analysis, design and synthesis of smart beams for improving the dynamic performance of smart engineering structures.
KW - Fuzzy logic
KW - Vibration suppression
KW - Magnetorheological
UR - https://digitalcommons.kettering.edu/mech_eng_facultypubs/120
UR - https://link.springer.com/chapter/10.1007/978-3-319-54735-0_24
U2 - 10.1007/978-3-319-54735-0_24
DO - 10.1007/978-3-319-54735-0_24
M3 - Chapter
BT - Shock Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics Optics
ER -