Vibration Analysis of Healthy Skin: Toward a Noninvasive Skin Diagnosis Methodology

Rakshita Panchal, Luke Horton, Peyman Poozesh, Javad Baqersad, Mohammadreza Nasiriavanaki

Research output: Contribution to journalArticlepeer-review

Abstract

Several noninvasive imaging techniques have been developed to monitor the health of skin and enhance the diagnosis of skin diseases. Among them, skin elastography is a popular technique used to measure the elasticity of the skin. A change in the elasticity of the skin can influence its natural frequencies and mode shapes. We propose a technique to use the resonant frequencies and mode shapes of the skin to monitor its health. Our study demonstrates how the resonant frequencies and mode shapes of skin can be obtained using numerical and experimental analysis. In our study, natural frequencies and mode shapes are obtained via two methods: (1) finite element analysis: an eigensolution is performed on a finite element model of normal skin, including stratum corneum, epidermis, dermis, and subcutaneous layers and (2) digital image correlation (DIC): several in-vivo measurements have been performed using DIC. The experimental results show a correlation between the DIC and FE results suggesting a noninvasive method to obtain vibration properties of the skin. This method can be further examined to be eventually used as a method to differentiate healthy skin from diseased skin. Prevention, early diagnosis, and treatment are critical in helping to reduce the incidence, morbidity, and mortality associated with skin cancer; thus, making the current study significant and important in the field of skin biomechanics.

Original languageAmerican English
JournalJournal of Biomedical Optics
Volume24
DOIs
StatePublished - Jan 21 2019

Keywords

  • Skin
  • Digital image correlation
  • Vibrometry
  • Finite element methods
  • Tissues
  • Skin cancer
  • 3D modeling
  • Shape analysis
  • MATLAB
  • In vivo imaging

Disciplines

  • Mechanical Engineering

Cite this