TY - JOUR
T1 - The measurement of conformational stability of proteins adsorbed on siloxanes
AU - Prokopowicz, Magdalena
AU - Banecki, Bogdan
AU - Łukasiak, Jerzy
AU - Przyjazny, Andrzej
PY - 2003/2/1
Y1 - 2003/2/1
N2 - The paper investigates the conformational stability of bovine serum albumin (BSA) and fibrinogen during 24-h incubation in turn with a linear silicone polymer (polydimethylsiloxane (PDMS)), with linear silicone oligomers (hexamethyldisiloxane and octamethyltrisiloxane) and with cyclic silicone oligomers (octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5)). Ten-fold and 100-fold excesses of siloxanes with respect to the proteins were used. Using fluorescence spectroscopy of tryptophan located in the domain of proteins and fluorescence of 8-anilino-1-naphthalenesulfonic acid (1,8-ANS), which interacts with hydrophobic domains of proteins, changes in the tertiary structure of the protein were recorded. The results demonstrated that BSA does not change its native form during 24-h incubation with siloxanes. In contrast, the tertiary structure of fibrinogen was found to be altered by both short-chain linear siloxanes: (hexamethyldisiloxane and octamethyltrisiloxane) and long-chain PDMS. The changes can be observed only at a 100-fold excess of siloxanes with respect to the protein. No conformational changes in fibrinogen exposed to cyclic siloxanes were observed.
AB - The paper investigates the conformational stability of bovine serum albumin (BSA) and fibrinogen during 24-h incubation in turn with a linear silicone polymer (polydimethylsiloxane (PDMS)), with linear silicone oligomers (hexamethyldisiloxane and octamethyltrisiloxane) and with cyclic silicone oligomers (octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5)). Ten-fold and 100-fold excesses of siloxanes with respect to the proteins were used. Using fluorescence spectroscopy of tryptophan located in the domain of proteins and fluorescence of 8-anilino-1-naphthalenesulfonic acid (1,8-ANS), which interacts with hydrophobic domains of proteins, changes in the tertiary structure of the protein were recorded. The results demonstrated that BSA does not change its native form during 24-h incubation with siloxanes. In contrast, the tertiary structure of fibrinogen was found to be altered by both short-chain linear siloxanes: (hexamethyldisiloxane and octamethyltrisiloxane) and long-chain PDMS. The changes can be observed only at a 100-fold excess of siloxanes with respect to the protein. No conformational changes in fibrinogen exposed to cyclic siloxanes were observed.
UR - https://digitalcommons.kettering.edu/chem_biochem_facultypubs/44
UR - https://www.tandfonline.com/doi/abs/10.1163/156856203321142560
U2 - 10.1163/156856203321142560
DO - 10.1163/156856203321142560
M3 - Article
VL - 14
JO - Journal of Biomaterials Science, Polymer Edition
JF - Journal of Biomaterials Science, Polymer Edition
ER -