The effects of extended conjugation length of purely organic phosphors on their phosphorescence emission properties

Daniel Hashemi

Research output: Contribution to journalArticlepeer-review

Abstract

We synthesized a series of purely organic phosphors, bromobenzaldehyde derivatives, with varying conjugation length to investigate the effects of conjugation length on their phosphorescence emission properties. As the conjugation length increases phosphorescence efficiency decreases with a redshift in the emission color at 77 K. Our computational results imply that this correlation is related to the intersystem crossing rate and that the rate is determined by spin–orbit coupling strength rather than by simply the energy difference between the lowest lying singlet and triplet states. TD-DFT calculations show that the S 1  → T 1  transition occurs more dominantly than the S 1  → T 2  transition for all cases. Moreover, singlet excited states are localized on the aldehyde functional group, regardless of the conjugation length, while triplet excited states are evenly distributed over the conjugated backbone. Consequently, as the conjugation length increases, the larger spatial separation between singlet and triplet states diminishes the spin–orbit coupling efficiency, resulting in reduced phosphorescence.
Original languageAmerican English
JournalPhys. Chem. Chem. Phys.
StatePublished - Jun 16 2015

Disciplines

  • Engineering
  • Physical Sciences and Mathematics

Cite this