TY - JOUR
T1 - Structural Basis for Thrombin Activation of a Protease-Activated Receptor
AU - Seeley, Stacy
AU - Covic, Lidija
AU - Jacques, Suzanne L.
AU - Sudmeier, James
AU - Baleja, James D.
AU - Kuliopulos, Athan
PY - 2003/11/1
Y1 - 2003/11/1
N2 - Protease-activated G protein-coupled receptors (PAR1–4) are tethered-ligand receptors that are activated by proteolytic cleavage of the extracellular domain (exodomain) of the receptor. PAR1, the prototypic member of the PAR family, is the high-affinity thrombin receptor of platelets and vascular endothelium and plays a critical role in blood coagulation, thrombosis, and inflammation. Here, we describe the solution structure of the thrombin-cleaved exodomain of PAR1. The side chains of a hydrophobic hirudin-like (Hir) sequence and adjacent anionic motif project into solution. Docking of the exodomain Hir sequence to exosite I of thrombin reveals that the tethered ligand in the cleaved exodomain bends away from thrombin, leaving its active site available to another large macromolecular substrate. The N-terminal ligand is longer than anticipated and forms an intramolecular complex with a region located in the C terminus of the exodomain. Mutational analysis confirmed that this C-terminal region is a ligand binding site for both intra- and intermolecular ligands. A lipidated-ligand binding site peptide was found to be an effective inhibitor of thrombin-induced platelet aggregation.
AB - Protease-activated G protein-coupled receptors (PAR1–4) are tethered-ligand receptors that are activated by proteolytic cleavage of the extracellular domain (exodomain) of the receptor. PAR1, the prototypic member of the PAR family, is the high-affinity thrombin receptor of platelets and vascular endothelium and plays a critical role in blood coagulation, thrombosis, and inflammation. Here, we describe the solution structure of the thrombin-cleaved exodomain of PAR1. The side chains of a hydrophobic hirudin-like (Hir) sequence and adjacent anionic motif project into solution. Docking of the exodomain Hir sequence to exosite I of thrombin reveals that the tethered ligand in the cleaved exodomain bends away from thrombin, leaving its active site available to another large macromolecular substrate. The N-terminal ligand is longer than anticipated and forms an intramolecular complex with a region located in the C terminus of the exodomain. Mutational analysis confirmed that this C-terminal region is a ligand binding site for both intra- and intermolecular ligands. A lipidated-ligand binding site peptide was found to be an effective inhibitor of thrombin-induced platelet aggregation.
UR - https://digitalcommons.kettering.edu/chem_biochem_facultypubs/97
UR - https://doi.org/10.1016/j.chembiol.2003.10.014
U2 - 10.1016/j.chembiol.2003.10.014
DO - 10.1016/j.chembiol.2003.10.014
M3 - Article
VL - 10
JO - Cell Chemical Biology
JF - Cell Chemical Biology
ER -