Residual smallness in commutative algebra

Research output: Contribution to journalArticlepeer-review

Abstract

<div class="line" id="line-7"> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> In Oman and Salminen [ </span> <a href="https://www.tandfonline.com/doi/abs/10.1080/00927872.2017.1376213?journalCode=lagb20#"> <span style='color: rgb(16, 20, 126); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> 19 </span> </a> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ], the authors introduce and study residually small rings, defined as follows: an infinite commutative ring&nbsp; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &nbsp;with identity is residually smallif for every&nbsp; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> r </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &isin; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &ssetmn;{0}, there exists an ideal&nbsp; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> I </i> <i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 13.2px;'> r </span> </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &nbsp;of&nbsp; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &nbsp;such that&nbsp; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> r </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &notin; </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> I </i> <i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 13.2px;'> r </span> </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> &nbsp;and | </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ∕ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> I </i> <i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 13.2px;'> r </span> </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> |&lt;| </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> |. The purpose of this note is to extend our study. In particular, we continue our investigation of residually small rings and then generalize this notion to modules. </span></div>
Original languageAmerican English
JournalCommunications in Algebra
Volume46
StatePublished - Oct 30 2017

Disciplines

  • Mathematics
  • Algebra

Cite this