Abstract
<div class="line" id="line-7"> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> In Oman and Salminen [ </span> <a href="https://www.tandfonline.com/doi/abs/10.1080/00927872.2017.1376213?journalCode=lagb20#"> <span style='color: rgb(16, 20, 126); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> 19 </span> </a> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ], the authors introduce and study residually small rings, defined as follows: an infinite commutative ring </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> with identity is residually smallif for every </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> r </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ∈ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ∖{0}, there exists an ideal </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> I </i> <i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 13.2px;'> r </span> </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> of </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> such that </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> r </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ∉ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> I </i> <i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 13.2px;'> r </span> </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> and | </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> ∕ </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> I </i> <i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 13.2px;'> r </span> </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> |<| </span> <i style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> R </i> <span style='color: rgb(51, 51, 51); font-family: "Open Sans", sans-serif; font-size: 17.6px;'> |. The purpose of this note is to extend our study. In particular, we continue our investigation of residually small rings and then generalize this notion to modules. </span></div>
Original language | American English |
---|---|
Journal | Communications in Algebra |
Volume | 46 |
State | Published - Oct 30 2017 |
Disciplines
- Mathematics
- Algebra