Intelligent Hybrid Vehicle Power Control—Part II: Online Intelligent Energy Management

Yi Murphey, Jungme Park, Leonidas Leonidas Kiliaris, Ming Kuang, M. Abul Masrur, Anthony Phillips, Qing Wang

Research output: Contribution to journalArticlepeer-review

Abstract

This is the second paper in a series of two that describe our research in intelligent energy management in a hybrid electric vehicle (HEV). In the first paper, we presented the machine-learning framework ML_EMO_HEV, which was developed for learning the knowledge about energy optimization in an HEV. The framework consists of machine-learning algorithms for predicting driving environments and generating the optimal power split of the HEV system for a given driving environment. In this paper, we present the following three online intelligent energy controllers: 1) IEC_HEV_SISE; 2) IEC_HEV_MISE ; and 3) IEC_HEV_MIME. All three online intelligent energy controllers were trained within the machine-learning framework ML_EMO_HEV to generate the best combination of engine power and battery power in real time such that the total fuel consumption over the whole driving cycle is minimized while still meeting the driver's demand and the system constraints, including engine, motor, battery, and generator operation limits. The three online controllers were integrated into the Ford Escape hybrid vehicle model for online performance evaluation. Based on their performances on ten test drive cycles provided by the Powertrain Systems Analysis Toolkit library, we can conclude that the roadway type and traffic congestion level specific machine learning of optimal energy management is effective for in-vehicle energy control. The best controller, IEC_HEV_MISE, trained with the optimal power split generated by the DP optimization algorithm with multiple initial SOC points and single ending point, can provide fuel savings ranging from 5% to 19%. Together, these two papers cover the innovative technologies for modeling power flow, mathematical background of optimization in energy management, and machine-learning algorithms for generating intelligent energy controllers for quasioptimal energy flow in a power-split HEV.
Original languageAmerican English
JournalIEEE Transactions on Vehicular Technology
Volume62
DOIs
StatePublished - Jan 2013

Keywords

  • Energy optimization
  • fuel economy
  • machine learning

Disciplines

  • Engineering

Cite this