Fabrication of high aspect ratio micro holes in glass by micro electrochemical discharge machining

Sumit K. Jui, Abishek Balsamy Kamaraj, Murali M. Sundaram

Research output: Contribution to conferencePresentation

Abstract

Micromachining of glass is essential for several microfluidic components, micro-pumps, micro-accelerometers, microreactors, micro-fuel cells and several biomedical devices. Unique properties such as high chemical resistance, thermal stability and transparency give glass scope for additional applications. However, poor machinability of glass is a major constraint, especially in high aspect ratio applications of glass in microsystem technology. Micro electrochemical discharge machining (micro ECDM) is an emerging nontraditional fabrication method capable of micromachining ceramic materials like glass. While surface features less than 100 µm have been successfully machined on glass, machining high aspect features is a challenge. Machining accuracy at high depths is severely affected due to overcut and tool wear. In this paper, high aspect ratio microtools fabricated in-house have been used for deep micro hole drilling on glass using low electrolyte concentration. An aspect ratio of 11 has been achieved. The results show that lower electrolyte concentration reduced overcut by 22%, thus increasing the aspect ratio of the micro holes. Lowering the electrolyte concentration also reduced the tool wear and hole taper by 39% and 18% respectively. The surface roughness was found to be in the range of 250-350 nm.
Original languageAmerican English
StatePublished - Jun 10 2013
EventTransactions of the North American Manufacturing Research Institution of SME - Madison, WI, USA
Duration: Jun 10 2013 → …

Conference

ConferenceTransactions of the North American Manufacturing Research Institution of SME
Period6/10/13 → …

Disciplines

  • Engineering

Cite this