Combining Monte Carlo Simulation with Heuristics for Solving the Inventory Routing Problem with Stochastic Demands

J. Caceres-Cruz, A.A. Juan, T. Bektas, Scott Grasman, J. Faulin

Research output: Contribution to conferencePresentation

Abstract

In this paper, we introduce a simulation-based algorithm for solving the single-period Inventory Routing Problem (IRP) with stochastic demands. Our approach, which combines simulation with heuristics, considers different potential inventory policies for each customer, computes their associated inventory costs according to the expected demand in the period, and then estimates the marginal routing savings associated with each customer-policy entity. That way, for each customer it is possible to rank each inventory policy by estimating its total costs, i.e., both inventory and routing costs. Finally, a multi-start process is used to iteratively construct a set of promising solutions for the IRP. At each iteration of this multi-start process, a new set of policies is selected by performing an asymmetric randomization on the list of policy ranks. Some numerical experiments illustrate the potential of our approach.
Original languageAmerican English
DOIs
StatePublished - Dec 9 2012
EventProceedings of the Winter Simulation Conference -
Duration: Jan 1 2012 → …

Conference

ConferenceProceedings of the Winter Simulation Conference
Period1/1/12 → …

Keywords

  • Inventory Routing Problem
  • Simulation
  • Heuristics
  • Customer Policy

Disciplines

  • Engineering
  • Operations Research, Systems Engineering and Industrial Engineering

Cite this